Evaluation of Carbon Emission Efficiency in the Construction Industry Based on the Super-Efficient Slacks-Based Measure Model: A Case Study at the Provincial Level in China

Author:

Zhang Jun1,Zhang Ying1,Chen Yunjie1,Wang Jinpeng1ORCID,Zhao Lilin1,Chen Min1ORCID

Affiliation:

1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

Abstract

Rapid urbanization and an increasing carbon footprint have underscored the need for sustainable practices in the construction industry. With the aim of prioritizing global sustainable development, the measurement of carbon emission efficiency in the construction industry (CEECI) has emerged as a critical indicator. Nevertheless, a comprehensive exploration of carbon emission efficiency within the Chinese construction sector remains limited, despite the pressing demand to mitigate carbon emissions. To address this research gap, this study aims to provide valuable policy recommendations for effectively reducing carbon emissions. We conducted a thorough assessment of both the total carbon emissions and the carbon emission intensity in 30 provinces and cities across China from 2010 to 2020. Utilizing the slacks-based measure (SBM) model with non-desired outputs, we evaluated the static CEECI, including the spatial correlation analysis and the evaluation of the carbon reduction potential in the construction industry (CRPCI). Additionally, the dynamic CEECI was quantified using the Malmquist–Luenberger (ML) index model, followed by an index decomposition analysis. The findings reveal several noteworthy insights: (1) There exists a positive correlation between carbon emissions in the construction industry and the economic scale. Generally, less developed areas (e.g., central and western regions of China) exhibit higher levels of carbon emission intensity (CEICI), while more developed areas (e.g., eastern regions of China) demonstrate lower levels of CEICI. (2) The CEECI across various provinces and cities demonstrates a clear spatial positive autocorrelation, while the CRPCI exhibits a negative correlation with the CEECI, with larger CRPCI values observed predominantly in western China. (3) Technological progress (MLTC) emerges as a crucial factor influencing the CEECI in our dynamic analysis. These findings offer valuable insights for policymakers to develop focused strategies to effectively mitigate carbon emissions nationwide.

Funder

Practice and Innovation Fund for University Students of Jiangsu Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3