An Efficient Construction Method of the 3D Random Asphalt Concrete Model Based on the Background Grid and the Moving-and-Densifying Algorithm

Author:

Liu Xiaoming1ORCID,Chen Huaan1ORCID,Zhao Yu1

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

Abstract

In order to avoid the tedious and time-consuming measuring process for thermal conductivity, many random models have been proposed, but the construction of those random models is still inefficient, which limits the further application. In this paper, a construction method of three-dimensional random asphalt models for predicting thermal conductivity based on the background grid and the moving-and-densifying algorithm was proposed which greatly improves construction efficiency. The influence of the random factors on models’ stability was studied and the range of the key factors within all random factors was restricted. Further, a conflict judgment method for the convex aggregate and the improved take-and-place method based on the background grid method and the moving-and-densifying algorithm was realized by MATLAB code to construct aggregate mixture models. Finally, the aggregate mixtures model was imported into ABAQUS 2022 to predict the thermal conductivity based on the steady-state plate method, and the validity of the predicting result was verified by experimental result. With this construction method, the stability index is improved by more than 80.71%, and packing efficiency is 198.98% higher than before. Additionally, the 3D random model showed a smaller prediction error range (less than 5%) than the 2D models (more than 10%) and was more accurate than the 2D prediction model. This research focused on improving the construction efficiency of the 3D random asphalt concrete model which contributes to full utilization and laying a foundation for further improvement.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan province

Transportation Science and Technology Project of Hunan province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3