Performance Study on Laterite Road Base Stabilised with Emulsions Incorporating Biochar

Author:

Chilufya Andrew1,Gangell David1,Shahin Mohamed A.1ORCID,Abdullah Hayder H.1ORCID

Affiliation:

1. School of Civil & Mechanical Engineering, Curtin University, Perth, WA 6845, Australia

Abstract

This study explores the utilisation of biochar as an innovative and sustainable additive to emulsions for stabilising laterite road base material in pavements, with the environmental benefit of sequestering atmospheric carbon and stable form storing. A diverse range of design mixtures for the treated road base material with the proposed biochar–emulsion binder was developed for experimental validation and subsequent steps encompassed an array of laboratory tests to scrutinise the engineering attributes of the mixtures. The tests were selected to assess various properties such as unconfined compressive strength, tensile strength, resilient modulus, flexural modulus, fatigue life, and deformation characteristics. To gain practical insights from real-world conditions, two field trials were also conducted to evaluate the performance of the stabilised road base. The findings revealed that a design mix incorporating 5% biochar and 6% emulsion delivered an average unconfined compressive strength (UCS) of 1.5 MPa, which adheres to the standard UCS range for cemented lightly bound base course material. The optimal ratio of biochar to emulsion was identified as 1:1.6, which delivered a higher resilient modulus value than did the minimum stipulated by the literature for average daily traffic in the first year of design. As the temperature rose, the stabilised laterite base exhibited a reduction in its flexural modulus; however, it demonstrated minimal susceptibility to fluctuations in frequency. The deformation observed in the wheel-tracking tests for mixtures of the optimum biochar-to-emulsion ratio was less than 1 mm, which is remarkably lower than the maximum requirement outlined in the literature (i.e., 15 mm). Furthermore, visual inspection post-testing detected minimal cracking. These findings indicate that the integration of biochar and emulsion in the construction of road pavements is a promising technique that could contribute to carbon sequestration and climate change mitigation without sacrificing pavement performance. The successful field trials provided further evidence of the feasibility of this novel technique.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3