Robust Building Identification from Street Views Using Deep Convolutional Neural Networks

Author:

Roussel Robin12ORCID,Jacoby Sam1ORCID,Asadipour Ali2ORCID

Affiliation:

1. School of Architecture, Royal College of Art, London SW7 2EU, UK

2. Computer Science Research Centre, Royal College of Art, London SW11 4NL, UK

Abstract

Street view imagery (SVI) is a rich source of information for architectural and urban analysis using computer vision techniques, but its integration with other building-level data sources requires an additional step of visual building identification. This step is particularly challenging in architecturally homogeneous, dense residential streets featuring narrow buildings, due to a combination of SVI geolocation errors and occlusions that significantly increase the risk of confusing a building with its neighboring buildings. This paper introduces a robust deep learning-based method to identify buildings across multiple street views taken at different angles and times, using global optimization to correct the position and orientation of street view panoramas relative to their surrounding building footprints. Evaluating the method on a dataset of 2000 street views shows that its identification accuracy (88%) outperforms previous deep learning-based methods (79%), while methods solely relying on geometric parameters correctly show the intended building less than 50% of the time. These results indicate that previous identification methods lack robustness to panorama pose errors when buildings are narrow, densely packed, and subject to occlusions, while collecting multiple views per building can be leveraged to increase the robustness of visual identification by ensuring that building views are consistent.

Funder

Prosit Philosophiae Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3