Numerical Simulation Methodology for Prefabricated Shear Walls Considering Stochastic Defects in Grouting Materials

Author:

Tang Baijian,Wang Jiawei,Shi Huiyuan,Xia Zhiyuan,Zhang Yongjie,Chen Li

Abstract

The most used connection form for reinforced steel bars is the grouting sleeve using cement-based grouting materials. Hence, the quality of the grouting sleeve connection determines whether the performance of a precast concrete structure is equivalent to that of a cast in situ concrete structure. However, several existing reasons, namely, insufficient grouting cement or poor construction controls and even stochastic bubble holes, lead to inevitable grouting defects. The behavior of precast concrete structures is affected dramatically. Considering the cost and efficiency of the analysis of precast concrete structures, the finite element method is still the most used method, but the simulation technology of structures considering stochastic defects in grouting materials is not sufficient. Herein, a simulation method considering stochastic defects in precast concrete structures is proposed, and the application of the method to grouting sleeves and shear wall structures is performed to verify its accuracy and feasibility. The construction of stochastic defects in grouting material is first realized through the Python scripter. Secondly, the mechanical parameters are obtained from the refined finite element analysis of grouting sleeves with material defects. Finally, based on the obtained mechanical properties of grouting sleeves, the behaviors of precast shear walls under blast loading are analyzed. The simulations of grouting sleeves under uniaxial tensile loading and precast concrete shear walls under blast loading both indicate that the proposed numerical method is feasible in solving the structural issues with stochastic defects in grouting materials.

Funder

National Natural Science Foundation of China

Jiangsu Province Science and Technology Department

Jiangsu Province Education Department

Jiangsu Association for Science and Technology

Suzhou Housing and Urban Rural Development Bureau

Suzhou University of Science and Technology

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3