Design Optimization of a Passive Building with Green Roof through Machine Learning and Group Intelligent Algorithm

Author:

Lin YaolinORCID,Zhao Luqi,Liu Xiaohong,Yang WeiORCID,Hao XiaoliORCID,Tian LinORCID

Abstract

This paper proposed an optimization method to minimize the building energy consumption and visual discomfort for a passive building in Shanghai, China. A total of 35 design parameters relating to building form, envelope properties, thermostat settings, and green roof configurations were considered. First, the Latin hypercube sampling method (LHSM) was used to generate a set of design samples, and the energy consumption and visual discomfort of the samples were obtained through computer simulation and calculation. Second, four machine learning prediction models, including stepwise linear regression (SLR), back-propagation neural networks (BPNN), support vector machine (SVM), and random forest (RF) models, were developed. It was found that the BPNN model performed the best, with average absolute relative errors of 3.27% and 1.25% for energy consumption and visual comfort, respectively. Third, six optimization algorithms were selected to couple with the BPNN models to find the optimal design solutions. The multi-objective ant lion optimization (MOALO) algorithm was found to be the best algorithm. Finally, optimization with different groups of design variables was conducted by using the MOALO algorithm with the associated outcomes being analyzed. Compared with the reference building, the optimal solutions helped reduce energy consumption up to 34.8% and improved visual discomfort up to 100%.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference55 articles.

1. Optimization of passive design measures for residential buildings in different Chinese areas

2. Research on the Technologies of Passive Low Energy Buildings on the Basis of Multi-Objective Optimization Method-by Taking Cold Zone Residential Buildings for Example;Wu;J. Cent. South Univ. (Nat. Sci. Ed.),2018

3. Review of intelligent building construction: A passive solar architecture approach

4. Application of Multi-Objective Genetic Algorithm Based Simulation for Cost-Effective Building Energy Efficiency Design and Thermal Comfort Improvement

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3