Emission Reduction Potential of Different Types of Finnish Buildings through Energy Retrofits

Author:

Hirvonen JanneORCID,Jokisalo JuhaORCID,Sankelo Paula,Niemelä Tuomo,Kosonen RistoORCID

Abstract

Energy retrofitting of buildings shows great potential in reducing CO2 emissions. However, most retrofitting studies only focus on a single building type. This paper shows the relative potential in six Finnish building types, to identify possible focus areas for future retrofits in Finland. Data from previous optimization studies was used to provide optimal cases for comparison. Energy demand of the buildings was generated through dynamic simulation with the IDA-ICE software. The cases were compared according to emissions reduction, investment and life cycle cost. It was found that, in all buildings, it was possible to reduce emissions cost-neutrally by 20% to 70% in buildings with district heating and by 70% to 95% using heat pumps. Single-family homes with oil or wood boilers switching to heat pumps had the greatest emission reduction potential. More stringent requirements for energy efficiency could be mandated during building renovation.

Funder

Academy of Finland

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference68 articles.

1. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings;Off. J. Eur. Union,2010

2. Extent of inertia caused by the existing building stock against an energy transition in the Netherlands

3. Directive (EU) 2018/844 of the European Parliament and of the Council amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on the energy efficiency;Off. J. Eur. Union,2018

4. A Renovation Wave for Europe—Greening our Buildings, Creating Jobs, Improving Lives,2020

5. Dynamic optimization of multi-retrofit building envelope for enhanced energy performance with a case study in hot Indian climate

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3