Experimental and Numerical Investigation of the Cross-Sectional Mechanical Behavior of a Steel–Concrete Immersed Tube Tunnel

Author:

Zhu Yao-Yu,Song Shen-You,Liu WeiORCID,Guo Ya-Wei,Zhu LiORCID,Li Jia-Xin

Abstract

This paper presents a proposed static test and numerical study on the mechanical properties of steel-shell–concrete-structure-immersed tunnel nodes, which is used to investigate the seismic performance and damage mechanism of steel-shell–concrete-structure-immersed tunnel nodes. The test is based on the immersed tube tunnel project in the deep China channel, and the nodes representing the outermost and innermost vertical walls of the immersed tube tunnel, i.e., L-shaped and T-shaped node specimens, were designed and fabricated at a scale of 1:5, and the specimens were mainly subjected to the combined effect of vertical axial compression and lateral displacement loads. The test results show that the L-shaped node will exhibit brittle damage characteristics with high lateral load carrying capacity and energy dissipation capacity during the ultimate load phase, while the T-shaped node exhibits bending damage with better ductility, so the outermost vertical wall should be locally reinforced to ensure the necessary ductility of the structure in the actual project. In addition, by comparing the numerical calculation and experimental results, it is found that there is good agreement in terms of load–displacement curves and crack distribution, which shows that the modeling method proposed in this paper can accurately simulate the mechanical properties of immersed tunnel nodes and can guide the section design of immersed tunnels with steel shell–concrete structures.

Funder

the R & D Plan Project in Key Areas of Guangdong Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3