Reliability of Existing Climate Indices in Assessing the Freeze-Thaw Damage Risk of Internally Insulated Masonry Walls

Author:

Sahyoun SaharORCID,Ge Hua,Lacasse Michael A.ORCID,Defo MauriceORCID

Abstract

This paper evaluates the reliability of the currently used climate-based indices in selecting a moisture reference year (MRY) for the freeze-thaw (FT) damage risk assessment of internally insulated solid brick walls. The evaluation methodology compares the ranking of the years determined by the climate-based indices and response-based indices from simulations, regarded as actual performance. The hygrothermal response of an old brick masonry wall assembly, before and after retrofit, was investigated in two Canadian cities under historical and projected future climates. Results indicated that climate-based indices failed to represent the actual performance. However, among the response-based indices, the freeze-thaw damage risk index (FTDR) showed a better correlation with the climate-based indices. Additionally, results indicated a better correlation between the climatic index (CI), the moisture index (MI), and FTDR in Ottawa; however, in Vancouver, a better fit was found between MI and FTDR. Moreover, the risk of freeze-thaw increased considerably after interior insulation was added under both historical and projected future climates. The risk of FT damage would increase for Ottawa but decrease for Vancouver under a warming climate projected in the future, based on the climate scenario used in this study. Further research is needed to develop a more reliable method for the ranking and the selection of MRYs on the basis of climate-based indices that is suitable for freeze-thaw damage risk assessment.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference58 articles.

1. Pan-Canadian Framework on Clean Growth and Climate Change: Canada’s Plan to Address Climate Change and Grow the Economy https://publications.gc.ca/site/eng/9.828774/publication.html

2. Reducing Greenhouse Gas Emissions in Canada’s Buildings Necessary to Meeting Paris Agreement Targets https://sencanada.ca/en/newsroom/enev-reducing-ghg-canada-buildings/

3. Model projected changes of extreme wind events in response to global warming

4. Evaluating wind extremes in CMIP5 climate models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3