Shaking Table Seismic Experimental Investigation of Lightweight Rigid Bodies

Author:

Cocuzza Avellino Giuseppe,Cannizzaro Francesco,Impollonia Nicola

Abstract

This study presents the findings of an extensive shaking table experimental campaign conducted on nine free-standing wooden specimens, aiming at providing insights on the rigid body motion of free-standing objects. The specimens, which differ in slenderness and size, are characterized by impairments in their base surface and most likely in their shapes, which also lead to asymmetric responses. The imperfections of the tested objects are an additional source of uncertainty with respect to the intrinsic chaotic character of the rigid body motion, which is a crucial factor that prevents the reproducibility of the tests and induces discrepancies between specimen responses and those of their ideal models. A contactless measurement strategy is employed to assure unaltered data acquisition. The experimental campaign includes free vibration tests, pulse excitation, and natural ground motions tests; the dynamic responses of the specimens are organized and rearranged, aiming at providing a comprehensive set of data that could be employed for calibrating numerical models accounting for imperfect conditions. The damping properties of the specimens are discussed, providing a novel estimation of the coefficient of restitution based on the free vibration tests. The limits of the ideal simple rigid model are highlighted, and the roles of size factor and aspect ratio are discussed according to the obtained results.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3