Investigation of Mechanical and Physical Features of Cementitious Jet Grout Applications for Various Soil Types

Author:

Cinar Muhammet1ORCID

Affiliation:

1. Faculty of Architecture and Engineering, Department of Civil Engineering, Kahramanmaras Sutcu İmam University, Kahramanmaras 46050, Türkiye

Abstract

The cementitious jet grout method (CJG) is one of the most preferred methods for the ground reinforcement of building foundations. As a result of the soil improvement made with the CJG, it was observed that there was a decrease in settlement, permeability, and liquefaction potential and an increase in the bearing capacity. In this study, columns with different grouting pressures (400, 450, and 500 bar) and water/cement ratios of 0.75, 1.00, and 1.25 were produced on several soil types (sand, clay, and alluvial soil) that have high liquefaction, settlement potential, and low bearing capacity. CJG columns were kept for 28 days after completion and then removed from the soil, and diameter measurements were made and significant differences were observed according to pressure and w/c ratios. Three samples were taken in CJG columns extracted from the ground. Laboratory tests were conducted to determine the physical (water absorption rate, density, and porosity) and mechanical (UCS and UPV) properties of CJG column samples. The highlighting of this paper is to build full-scale CJG columns in sandy soil, clay soil, and alluvial soil, increase the geotechnical engineering properties, and investigate the strength development, and diameter under different w/c ratios and different injection pressures. The strength of CJG columns in sandy soils was found between 36 and 15 MPa, in clay soils between 15 and 4 MPa and in alluvial soils between 32 and 15 MPa. Moreover, it was observed that there was a significant increase in the diameters with the increase in the injection pressure and a decrease in the compressive strengths. When the CJG column diameters were compared with constant injection pressure and increasing w/c ratios, the maximum increase was found to be 13% for sandy soils, 10% for clayey soils, and 14% for alluvial soils. The column diameters were 37% larger for sandy soils than clayey soils and 26% larger than alluvial soils at the same w/c ratio and constant injection pressure. In conclusion, since the results found in this study were made on a real scale in the field and for three different soil conditions, the results can be used directly in future engineering applications.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3