Rolling Shear Strength of Cross Laminated Timber (CLT)—Testing, Evaluation, and Design

Author:

Glasner David1,Ringhofer Andreas1,Brandner Reinhard1ORCID,Schickhofer Gerhard12

Affiliation:

1. Institute of Timber Engineering and Wood Technology, Graz University of Technology, 8010 Graz, Austria

2. Holz.Bau Forschungs GmbH, 8010 Graz, Austria

Abstract

Cross laminated timber (CLT), with its typical orthogonal layering and exposure to out-of-plane bending, develops inherent rolling shear stresses. These stresses need to be checked during the ultimate limit state design process. With the ongoing revision of Eurocode 5, a discussion regarding the characteristic value of the rolling shear strength of CLT has arisen. One obstacle in the discussion is seen in the lack of harmonized regulations concerning how to determine rolling shear properties. This circumstance manifests in the greatly diverging test results of different institutions testing the rolling shear strength. The paper at hand aims to propose a candidate for such harmonized regulations. To achieve this, the most common test setups, such as the inclined shear test, three- and four-point bending tests, etc., were numerically and experimentally investigated. Within the numerical investigations, a comparison of the most common calculation methods (Timoshenko beam theory, modified γ-method, Shear Analogy Method, and Finite Element Analysis) for evaluating rolling shear stresses was included. In the experimental program, parameters such as the specimen width, number, and thickness of the cross layer(s), shear length, optional reinforcement against the stresses perpendicular to the grain, and the overall test setup were varied. It was found that the used test setups themselves and the area of the cross layer(s) (shear length, number, and thickness of the cross layer(s)) have a major impact on the rolling shear strength. In contrast, no effect was found from the calculation methods. Based on these findings and on a database of approx. 300 four-point bending rolling shear tests on CLT specimens from five well-established CLT manufacturers, a model for the regulation of the rolling shear strength of CLT is proposed, in combination with a corresponding four-point bending test setup. Afterwards, with two additionally conducted four-point bending test series, the proposed model is successfully validated. The conclusions and recommendations in respect to the test setup (four-point bending), evaluation procedure (Timoshenko beam theory), reference characteristic rolling shear strength, and the model, which allows adapting the reference rolling shear strength to individual conditions, are seen as a worthy basis for a more objective discussion on this topic.

Funder

holz.bau forschungs gmbh

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference41 articles.

1. Brandner, R., Tomasi, R., Moosbrugger, T., Serrano, E., and Dietsch, P. (2018). Properties, Testing and Design of Cross Laminated Timber: COST Action FP1402/WG 2, Shaker.

2. (2015). Solid Wood Slab Element to Be Used as a Structural Element in Buildings (Standard No. EAD 130005-00-0304).

3. (2021). Timber Structures—Cross Laminated Timber—Requirements (Standard No. EN 16351).

4. Einfluss der Bauteilgrößer in der linearen und nichtlinearen (Holz-) Bruchmechanik;Aicher;Holz Als Roh-Und Werkst.,1993

5. Görlacher, R. (2013, January 26–29). In-plane shear strength of cross laminated timber (CLT): Test configuration, quantification and influencing parameters. Proceedings of the CIB-W18 Proceedings, Meeting 46, Vancouver, BC, Canada.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Out-of-plane bending properties of cross laminated timber (CLT);Construction and Building Materials;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3