Analysis of Construction Process and Configuration Automatic Monitoring for the Spoke-Type Single-Layer Cable Net Structure

Author:

Wang Fei12ORCID,Di Zenghui12ORCID,Zhang Ningyuan12ORCID,Ruan Yangjie12,Luo Bin12ORCID,Wang Yiquan12,Liu Xin3

Affiliation:

1. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China

2. School of Civil Engineering, Southeast University, Nanjing 211189, China

3. Nanjing Dong-Da Modern Prestressed Engineering Co., Ltd., Nanjing 210096, China

Abstract

As a full tension structural system, the spoke-type single-layer cable net structure has a light graceful shape and superior mechanical properties. During construction, the structure will gradually be tensioned from the flexible unstressed state to the formed state with stiffness, and the structural configuration changes greatly, making construction difficult. This study focused on the spoke-type single-layer cable net structure of the Linyi Olympic Sports Center Stadium. The structural finite element model was established in ANSYS, and the construction scheme was selected and simulated using the nonlinear dynamic finite element method (NDFEM). Most of the existing structural automatic measuring systems are suitable for measuring points with gentle deformation. However, there is the lack of a stable and reliable automatic configuration monitoring system for the construction of single-layer cable net structures. Based on the Lecia TS16 robotic total station (RTS), the configuration automatic monitoring system (CAMS) was developed to obtain the coordinate data of key nodes on the ring cable and compression ring during the construction process. The original finite element model of clamps was refined to obtain the corresponding data in ANSYS. The results indicate that the selected construction scheme has a rational mechanical response according to the finite element simulation. The radial cable force when anchoring the traction cables is smaller than or equal to that in the formed state, which proves that the construction method of anchoring in batches is safe. The results of the ANSYS simulation is basically consistent with those obtained by CAMS, proving that the simulation method is credible. CAMS has good stability and measurement accuracy and can achieve the automatic monitoring of large structural deformation. The research findings provide valuable guidance for practical construction and other similar projects.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3