Abstract
Mechanical diffusion of chloride ions in reinforced concrete (RC) structures varies in time and space, and depends on uncertain factors such as material properties, temperature, humidity, and aging. In this paper, different scenarios considering the time of corrosion initiation and the influence of the chloride diffusion coefficient for different loadings (i.e., constant, sinusoidal, Gaussian, and random) were proposed. Stochastic analyses were carried out to estimate the probability of failure of steel bars, and to evaluate the influences of the internal and external factors. Advanced numerical solutions were developed to account for these influences under non-constant diffusion coefficient and non-steady-state condition. Results show that the chloride content can assume low values by using the oscillations of the generic function (e.g., sinusoidal and general) instead of constant function. The influence of the temperature appears relevant. The 3D analyses, considering the random variability, show that chloride content can be higher than ~1.50 compared to chloride content using traditional approaches. Stochastic approaches plus advanced solutions allow, in a more complete way, the sustainability decision-making process during the design phase, maintenance, inspections, and repair.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献