Seismic Isolation of Fragile Pole-Type Structures by Rocking with Base Restraints

Author:

Li Sheng123ORCID,Hu Yao4ORCID,Lu Zhicheng3,Song Bo1,Huang Guozhong12

Affiliation:

1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Research Institute of Macro-Safety Science, University of Science and Technology Beijing, Beijing 100083, China

3. China Electric Power Research Institute, Beijing 100055, China

4. Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia

Abstract

Pole-type structures are vulnerable to earthquake events due to their slender shapes, particularly porcelain cylindrical equipment in electrical substations, which has inherent fragility and low strength in its materials. Traditional base isolation designs configure the bottom of the pole-type equipment as hinges with restraints. It fully relies on the restrainers to re-center the pole-type equipment, posing a risk of tilting and functionality failure after earthquakes. This study proposes a solution to this challenge by introducing a restrained rocking mechanism at the base of the structure. The design leverages the self-centering nature of rocking motion and uses restrainers to control the amplitude of rotation. Hence, it can effectively avoid tilting of the pole-type structures after earthquakes. Experimental investigations conducted on a 1:1 full-scale specimen revealed that the proposed restrained rocking design can achieve a reduction in seismic internal forces of over 50% while maintaining equipment in an upright position. Furthermore, an analytical model for the proposed isolation system of pole structures was developed and validated through comparison with experimental results. This paper introduces a novel solution for seismic isolation of pole-type structures through restrained rocking, specifically addressing the research gap regarding a reliable self-centering mechanism under seismic excitation. This advancement significantly enhances the seismic resilience of fragile pole-type structures and provides practical design methodologies for the seismic isolation of slender structures.

Funder

University of Science and Technology Beijing

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3