Column Link Behavior in Eccentrically Braced Composite 3-Dimensional Frames

Author:

Reena G. Celine1,Gurupatham Beulah Gnana Ananthi1ORCID,Tsavdaridis Konstantinos Daniel23ORCID

Affiliation:

1. Department of Civil Engineering, College of Engineering, Guindy, Anna University, Chennai 600 025, India

2. Department of Engineering, School of Science & Technology, City, University London, Northampton Square, London EC1V 0HB, UK

3. International Advanced Science and Technology Research Organization (IROAST), Kumamoto University, Kurokami, Kumamoto 8608555, Japan

Abstract

Eccentrically braced frames are renowned for their capacity to absorb seismic forces while offering greater adaptability. These frames incorporate bracings that are joined to the beams with an intentional offset, forming a connection within the beams. Nevertheless, there are drawbacks associated with implementing these beam connections when renovating frames. This paper seeks to enhance the design approach by introducing an eccentric link within the column of a composite structure. Eccentric braced frames (EBFs) are hybrid systems that offer both ductility in moment resisting frames (MRFs) and lateral stiffening in the concentrically braced system. The study examines composite frames with 5, 10, and 15 stories using eccentric X- and V-type bracings with an eccentricity of 0.5 m and 1 m. Three different earthquake zones are considered, based on Indian seismic code provisions: zone 3, zone 4, and zone 5. The structures are analyzed computationally by nonlinear time history analyses. The lateral load-resisting behavior of the structure with the same eccentricity in beam links and column links is compared. Then, the structure is subjected to a pushover analysis to study the performance characteristics such as capacity curve, lateral displacement, inter-storey drift, and plastification of the structure. As anticipated, compared to conventional moment resisting frames (MRFs) and concentrically braced frames (CBFs), eccentrically braced frames have better energy dissipation. Furthermore, the behavior of X-braced column links is found to be similar to the performance of beam links, but V-braced frames showed better performance in column link frames than in beam link frames. Also, the increase of the link length played a major role in the ductility of the frames.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3