Data Center Energy Evaluation Tool Development and Analysis of Power Usage Effectiveness with Different Economizer Types in Various Climate Zones

Author:

Kim Ji Hye1,Shin Dae Uk2ORCID,Kim Heegang3ORCID

Affiliation:

1. Department of Architectural Engineering, Kwangwoon University, 20 Kwangwoon-ro, Seoul 01897, Republic of Korea

2. Department of Architecture and Building Engineering, Kunsan National University, 558 Daehak-ro, Gunsan, Jeonbuk 54150, Republic of Korea

3. Plant Research Group, Posco E&C, 241 Incheon Tower-daero, Incheon 22009, Republic of Korea

Abstract

Data centers are energy-intensive facilities, with over 95% of their total cooling load attributed to the heat generated by information technology equipment (ITE). Various energy-saving techniques have been employed to enhance data center efficiency and to reduce power usage effectiveness (PUE). Among these, economizers using outdoor air for cooling are the most effective for addressing year-round cooling demands. Despite the simplicity of the load composition, analyzing data center cooling systems involves dynamic considerations, such as weather conditions, system conditions, and economizer control. A PUE interpretation tool was specifically developed for use in data centers, aimed at addressing the simplicity of data center loads and the complexity of system analysis. The tool was verified through a comparison with results from DesignBuilder implementing the EnergyPlus algorithm. Using the developed tool, a comparative analysis of economizer strategies based on the PUE distribution was conducted, with the aim of reducing the PUE of data centers across various climatic zones. The inclusion of evaporative cooling (EC) further improved cooling efficiency, leading to reductions in PUE by approximately 0.02 to 0.05 in dry zones. Additionally, wet zones exhibited PUE reductions, ranging from approximately 0.03 to 0.07, with the implementation of indirect air-side economizer (IASE). Sensitivity and uncertainty analysis were further conducted. The computer room air handler (CRAH) supply temperature and CRAH temperature difference were the most influential factors affecting the annual PUE. For the direct air-side economizer (DASE) and DASE + EC systems, higher PUE uncertainty was observed in zones 1B, 3B, 4B, and 5B, showing ranges of 1.17–1.39 and 1.15–1.17, respectively. In the case of the IASE and IASE + EC systems, higher PUE uncertainty was noted in zones 0A, 0B, 1A, 1B, and 2A, with ranges of 1.22–1.43 and 1.17–1.43, respectively. The distinctive innovation of the tool developed in this study is characterized by its integration of specific features unique to data centers. It streamlines the computation of cooling loads, thus minimizing the burden of input, and delivers energy consumption data for data center cooling systems with a level of precision comparable to that of commercial dynamic energy analysis tools. It provides data center engineers with a valuable resource to identify optimal alternatives and system design conditions for data centers. This empowers them to make informed decisions based on energy efficiency enhancements, thereby strengthening their ability to improve energy efficiency.

Funder

National Research Foundation of Korea

Korean government

Kwangwoon University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3