Bond Performance of Seamless Steel Pipe Grouting Sleeves under Large-Deformation Repeated Tension and Compression after High Temperature

Author:

Zhao Jun1,Wei Changji1,Chen Jing2,Ma Bin1,Xiao Weiwei1

Affiliation:

1. School of Architecture and Transportation Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. School of Civil and Architectural Engineering, Guilin University of Technology, Guilin 541004, China

Abstract

Grouting sleeves are widely used in the field of assembled construction. The present study aims to investigate the reliability of grouting sleeves under large-deformation repeated tension and compression after high temperature, considering the influences of steel bar diameter, the cooling method, and the protective layer. Through experimentation on 28 test pieces, we analyzed the bonding performance of the test pieces at different high temperatures. The results indicate that within the temperature range of 20–800 °C, the bond performance of the test pieces declines by no more than 9.8%. However, upon reaching a temperature of 1000 °C, the bond performance of the test pieces decreases by over 33.7%, with the compressive strength of the grout material reduced to only 27.50% of that kept at 20 °C. Employing larger-diameter steel bars is advantageous for maintaining the bond performance of the test pieces. Natural cooling shows relatively good bond performance, although its influence is not significant. Furthermore, the protective layer effectively attenuates the heating rate of the test pieces, thus safeguarding their bond performance. Scanning electron microscopy (SEM) analysis reveals that the decomposition of C-H and C-S-H phases is the primary cause of high-temperature degradation of the grouting material. Finally, a recommendation for the correlation coefficient (k) between the average bond strength and the compressive strength of the grout material is proposed, with a suggested value of k ≤ 2.58.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3