Abstract
The present study investigates the issue of computer-aided daylight evaluation in an office room with a light shelf and dropped translucent ceiling. In this type of room, daylight is admitted from two sources: (i) a standard window in the wall and (ii) via a light shelf and clerestory window, which illuminate the plenum located above the working space. The light from the plenum is transmitted through the translucent ceiling into the office room. The present study is based on data obtained through a computer-aided daylight simulation by DeLuminæ (DL-Light, ver. 11.0.9, and DL-Instant, ver. 6.1.4) software using the Radiance engine and real weather data for Wroclaw, Poland, at 51st lat. N. An office room of 12 × 6 m with different shading and daylight distribution scenarios was simulated (Variants 1–5). Next, the useful daylight illuminance (UDI (%)) for the range of 300–3000 lx and daylight glare probability (DGP) were calculated. To further optimize the daylighting scenarios, an adaptive shading system was simulated, which was activated when the illuminance value dropped below 300 lx. In the final variant, Variant 6, mean UDI300–3000 values were recorded to be above 80% for 95% of the area of the work plane. This allows the conclusion that a light shelf and translucent ceiling guide daylight deep into the room, improving uniformity and reducing glare when the standard window is covered by an adaptive shading system.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Reference58 articles.
1. Lighting Guide LG7/15,2015
2. Sustainable Development Goals, United Nations Department of Global Communicationshttps://www.un.org/sustainabledevelopment/wp-content/uploads/2019/01/SDG_Guidelines_AUG_2019_Final.pdf
3. An Evaluation of Annual Luminous Exposure from Daylight in a Museum Room with a Translucent Ceiling
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献