On the Seismic Evaluation of Steel Frames Laterally Braced with Perforated Steel Plate Shear Walls Considering Semi-Rigid Connections

Author:

Majlesi Arsalan,Asadi-Ghoozhdi HamidORCID,Bamshad Omid,Attarnejad Reza,Masoodi Amir R.ORCID,Ghassemieh MehdiORCID

Abstract

Steel plate shear walls usually do not satisfy the strong-column weak-beam design criteria, leading to larger column sections. On the other hand, rigid frame structures are typically constructed in low-rise to mid-rise buildings built in locations prone to strong earthquakes due to their high flexibility and cost-effective solutions. Overcoming these restrictions to the SPSW system, this paper is dedicated to employing a semi-rigid connection that dissipates energy well and reduces the forces applied to the structure. By using a semi-rigid connection in an adjacent span to the SPSW, the actual flexural capacity of the beam end decreases and, subsequently, improves the performance of the structure in terms of the of the strong-column weak-beam criteria. Thereupon, the impact of the semi-rigid connections on steel frames with SPSWs as a sideway resisting system can be assessed by implementing a numerical study. In this paper, a new methodology for modelling semi-rigid joints is used considering five connections with different moment capacities. Moreover, the influence of three different circular diameters on the behavior of the perforated SPSWs was investigated. To fulfil these purposes, nonlinear dynamic analysis was conducted to assess the reliability of 5-, 10-, and 15-story frames resisted with SPSWs and semi-rigid connections subjected to actual ground motion records. A total of 45 frames were modelled and the obtained results were compared with reference benchmarks. The outcomes of the studies show good agreement with design building code requirements. In addition, the reliable performance of the structure under seismic loads is evaluated. According to the results of the parametric study, the presumed allowable drift leads to obtaining the optimum moment capacity of connection for each model and illustrates the applicability of a new structural system consisting of SPSWs and semi-rigid connections simultaneously.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3