Abstract
This paper investigates the effect of using near-surface mounted carbon fiber-reinforced polymer (NSM-CFRP) on the shear strengthening of rectangle beams with low strength concrete (f′c = 17 MPa), medium strength concrete (f′c = 32 MPa), and high strength concrete (f′c = 47 MPa). The experimental program was performed by installing NSM-CFRP strips vertically in three different configurations: aligned with the internal stirrups, one vertical NSM-CFRP strip between every two internal stirrups, and two vertical NSM-CFRP strips between every two internal stirrups. All tested beams were simply supported beams and tested under a three-point loading test. The experimental results were compared with the theoretical capacities that were calculated according to the ACI 440.2R-17 and finite element analysis (FEA) that was conducted using ABAQUS software to simulate the behavior of all beams. The experimental results indicated that using NSM-CFRP limited the failure mode of all beams to pure shear failure with no debonding or rapture of the carbon strips. Moreover, the use of NSM-CFRP proved its efficiency by increasing the shear capacity of all beams by a range of 4% to 66%, in which the best enhancement was recorded for the case of using two unaligned NSM-CFRP strips. In general, the experimental shear capacities increased with the increase in the compressive strength of all beams. On the other hand, the ACI 440.2R-17 was conservative in predicting the theoretical shear capacities, and the FEA results agreed well with the experimental results.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献