Research on Monitoring Technology for Frame Piers of Continuous Box-Girder Bridges Constructed by the Cantilever Method

Author:

Liu Fanggang1,Gu Lixiong2,Fu Haishan1,Li Xinping2,Zhao Xiaolong3,Ma Niujing2,Liu Shixun2

Affiliation:

1. Guangzhou Highway Co., Ltd., Guangzhou 510000, China

2. Department of Civil Engineering, Faculty of Civil Engineering and Transport, South China University of Technology, Guangzhou 510000, China

3. Guangzhou Yuedong Country Garden Investment Co., Ltd., Meizhou 514000, China

Abstract

This paper focuses on the analysis of the stress state of a large-span frame pier-continuous box girder bridge with pier crossbeams anchored by pier crossbeams on the main pier of the Guangfo-Zhao Expressway. The bridge is constructed by the cantilever method, and a refined finite element model of the entire bridge is established using the finite element software Midas/FEA to analyze the stress state of the frame pier during the cantilever construction process. It is found that under the possible combined action of an unbalanced load during construction, the torsional resistance of the frame pier crossbeam does not meet the requirements of the design code. In order to eliminate the torsion of the frame piers, counterweights were used to monitor the frame piers during the construction of the box girders. In this paper, the theoretical calculation formula of the inclination angle of the end section of the frame pier crossbeam with the change of unbalanced bending moment, the calculation formula of the relationship between the horizontal displacement of the frame pier and the unbalanced bending moment, and the calculation formula corresponding to the relationship with the water tank counterweight are derived using the structural mechanics method. Two monitoring methods for the frame pier are proposed. In the construction monitoring of the bridge, the numerical fitting formula obtained by finite element numerical analysis calculation is compared with the calculated formula obtained by substituting the design parameters of the frame pier into the theoretical formula. The basic constants in both formulas are basically equal, verifying the correctness of the monitoring calculation formula proposed in this paper for the torsional resistance of the frame pier crossbeam. The applicability of the two monitoring methods is also compared and analyzed. This paper takes the main pier of Chaoyang overpass’s mainline bridge as the engineering background, which adopts the framework pier with a large-span prestressed concrete continuous box girder bridge. It analyzes the torsional state of the beam of the framework pier during the bridge construction process and conducts research on the construction monitoring of the framework pier crossbeam, providing valuable references for the construction monitoring of framework pier crossbeams in the construction of large-span framework pier continuous bridges in the future. The research results of this paper can provide assistance for the construction monitoring of similar projects. This paper’s innovation primarily resides in employing structural mechanics methods to compute the torsion of frame piers. On this basis, a simplified beam torsion calculation formula is proposed to strengthen its practical application in construction monitoring. The findings of this paper can help in the construction monitoring of similar projects.

Publisher

MDPI AG

Reference29 articles.

1. Study on the mechanical properties of the prestressed concrete cover beam for the frame pier;Zhang;Concrete,2023

2. Discussion on the space analysis and design and calculation method of large cantilever and wide box beam;Song;Highw. Eng.,2022

3. Study on the design of long-span steel beam frame pier of high-speed railway high pier;Li;China Railw.,2020

4. Analysis of influence factors of railway steel beam frame pier design;Wang;Shanxi Archit.,2020

5. Zhang, M. (2009). Application of large-span frame pier in the span bridge. Highway, 99–101. (In Chinese).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3