Deep-Learning-Based Strong Ground Motion Signal Prediction in Real Time

Author:

AlHamaydeh Mohammad1ORCID,Tellab Sara2,Tariq Usman3ORCID

Affiliation:

1. Department of Civil Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

2. Department of Mechatronics, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

3. Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

Abstract

Processing ground motion signals at early stages can be advantageous for issuing public warnings, deploying first-responder teams, and other time-sensitive measures. Multiple Deep Learning (DL) models are presented herein, which can predict triaxial ground motion accelerations upon processing the first-arriving 0.5 s of recorded acceleration measurements. Principal Component Analysis (PCA) and the K-means clustering algorithm were utilized to cluster 17,602 accelerograms into 3 clusters using their metadata. The accelerograms were divided into 1 million input–output pairs for training, 100,000 for validation, and 420,000 for testing. Several non-overlapping forecast horizons were explored (1, 10, 50, 100, and 200 points). Various architectures of Artificial Neural Networks (ANNs) were trained and tested, such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, and CNN-LSTMs. The utilized training methodology applied different aspects of supervised and unsupervised learning. The LSTM model demonstrated superior performance in terms of short-term prediction. A prediction horizon of 10 timesteps in the future with a Root Mean Squared Error (RMSE) value of 8.43 × 10−6 g was achieved. In other words, the LSTM model exhibited a performance improvement of 95% compared to the baseline benchmark, i.e., ANN. It is worth noting that all the considered models exhibited acceptable real-time performance (0.01 s) when running in testing mode. The CNN model demonstrated the fastest computational performance among all models. It predicts ground accelerations under 0.5 ms on an Intel Core i9-10900X CPU (10 cores). The models allow for the implementation of real-time structural control responses via intelligent seismic protection systems (e.g., magneto-rheological (MR) dampers).

Funder

American University of Sharjah (AUS) through the Open-Access Program

College of Engineering at the AUS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3