Prediction of the Long-Term Tensile Strength of GFRP Bars in Concrete

Author:

Zhu Peng12ORCID,Li Zongyang13,Zhu Yunming1,Wu Yuching1,Qu Wenjun1

Affiliation:

1. College of Civil Engineering, Tongji University, Shanghai 200092, China

2. Key Laboratory of Performance Evolution and Control for Engineering Structures, Tongji University, Ministry of Education, Shanghai 200092, China

3. Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China

Abstract

The durability of two types of widely used glass fiber reinforced polymer (GFRP) bars, one without coating (G1) and one with slightly surface sand-coating (G2), were studied through accelerated aging. Concrete cylinders reinforced with GFRP bars were immersed in tap water in temperature-controlled tanks. The influence of different exposure temperatures, 20, 40, and 60 °C, and also different exposure times, 30, 60, 90, 120, and 180 days, on the degradation of the two types of GFRP bars was investigated. The tensile strengths of GFRP bars after different exposure times were evaluated with tensile tests, and the variation of the microstructure and elemental compositions of conditioned specimens was evaluated with scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDS), respectively. The degradation rate of the tensile strength retentions of two types of GFRP bars decreased with an increase in the exposure time at all exposure temperatures. The tensile strength retentions of the GFRP bars were studied by three commonly used prediction models. Based on the degradation mechanism of fiber-matrix debonding, a new model was proposed. These four models were evaluated with the test results and a new model proposed was suggested as the best model to predict the residual tensile strength of the GFRP bars. The durability parameters of the GFRP bars were discussed. The tensile strength retention tended to converge to a constant value (52%) with the increase of exposure time, which contributes to the determination of the environmental reduction factor in relevant design guides, and the fiber-matrix debonding was found to be the main degradation mechanism due to the surrounding concrete environment. The sand-coating had some effect on the activation energy of the GFRP bars.

Funder

National Key Research and Development Program of China

Shanghai Pujiang Program

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3