Topology Optimization of Stiffened Steel Plate Shear Wall Based on the Bidirectional Progressive Structural Optimization Method

Author:

He Jianian1,Li Xuhao1,Chen Shizhe1ORCID,Xian Huasheng1

Affiliation:

1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Many studies on structural topology optimization of steel plate shear walls have been conducted. However, research on topology optimization using the bidirectional evolutionary structural optimization method is limited. Accordingly, this study optimized the topology of the stiffening effect of steel plate shear walls (SPSWs) based on this method. A finite element model of the SPSW was established using Abaqus software through the “sandwich” modeling method. An optimization region was expanded into two optimization regions. As the optimization targets, SPSWs with different aspect ratios were selected. Elastoplastic optimization of a single-layer SPSW was performed through the horizontal displacement cyclic loading, and the distribution law of the stiffening effect was obtained. The stiffeners on the SPSW were arranged according to the SPSW-A075 scheme. Monotonic and reciprocating loading simulation tests were performed on the unstiffened SPSW and common transverse and longitudinal stiffeners to analyze their mechanical properties. The results show that the optimized layout of the stiffened SPSW demonstrated better seismic performance and energy dissipation capacity. The buckling bearing capacity increased by 2.17–2.61 times, and the stiffness and initial stiffness improved significantly.

Funder

Study on energy dissipation capacity of joints in steel structure system based on modified component method

Research on some key scientific problems of connection node information in high performance building structures

Research on constitutive model of steel structure joint based on data analysis and artificial intelligence

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3