Affiliation:
1. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
2. Engineering Technology Research Center for Structural Vibration Control and Health Monitoring of Henan Province, Zhengzhou 450046, China
Abstract
In order to analyze the shear mechanism of the steel-fiber high-strength concrete corbels, a calculation model for the shear bearing capacity of steel-fiber-reinforced high-strength concrete corbels was proposed based on the modified compression field theory. Considering the existence of residual tensile stress in steel-fiber-reinforced concrete at crack locations, the cracked steel-fiber-reinforced concrete was treated as a continuous material. The constitutive relation of cracked steel-fiber-reinforced concrete and the local stress equilibrium equation were modified. It was compared with the results of 34 steel-fiber high-strength concrete corbels, including those in this paper. The predicted results were compared with the experimental values and the predictions of the Fattuhi model, Campione model, and Russo model to validate the rationality of the proposed model. The results revealed that the mean value between the experimental values and the predicted results of the proposed model is 1.104, with a variance of 0.003, showing good agreement. The proposed model can accurately predict the shear bearing capacity of steel-fiber-reinforced high-strength concrete corbels.
Funder
National Natural Science Foundation of China