Affiliation:
1. School of Management, Fujian University of Technology, No. 69, Xuefu South Street, Fuzhou 350118, China
2. Department of Applied Physics and Electronics, Umeå University, 90187 Umeå, Sweden
Abstract
Concrete is one of the most used building materials globally, leading to a large amount of greenhouse gas (GHG) emissions. Using supplementary cementitious materials (SCM) as replacements for cement in concrete provides an effective way to reduce GHG emissions. However, quantifying the construction performance of using SCM concrete is hard because of complex interactions between concrete’s mechanical properties and construction characteristics, like local energy supply, surrounding temperature and construction plans, which leads to only the fragmental performance of using SCM concrete being explored in previous studies. There still lacks an effective way to quantify the comprehensive performance and provide decision support for contractors about how to use SCM concrete. To deal with the gap, this research proposes a Collection–Simulation–Calculation–Decision (CSCD) method to analyze the complex interactions between concrete and construction, and to quantify the performance of the supply chain–construction when using SCM. A case study is also conducted to demonstrate the effectiveness of the proposed method. The results show that the proposed method is effective in quantifying the performance of using SCM concrete in construction and providing decision support for construction decision makers. A scenario analysis is also conducted to demonstrate the effectiveness of the proposed method in different project characteristics, including the global warming potential (GWP) factors for different construction sites, seasonal temperature changes and different construction plans. The proposed method is an effective tool to quantify the construction performance of using SCM concrete considering complex interactions between concrete mechanical properties and construction characteristics. The results of the research can assist construction decision makers to make decisions about using SCM concrete by comprehensively understanding the impacts shifting along the concrete supply chain and construction.
Funder
Fujian Natural Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献