Investigation of Surface Modification of Bagasse Fibers: Performance of Asphalt Binders/Mixtures with Bagasse Fibers

Author:

Xie Haiwei123,Jia Yixuan2,Zhu Chunsheng4,Liu Weidong5,Li Zuzhong6,Huang Zhipeng6

Affiliation:

1. School of Traffic & Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China

2. School of Traffic & Logistics Engineering, Xinjiang Agricultural University, Urumqi 830052, China

3. Key Laboratory of Highway Engineering Technology and Transportation Industry in Arid Desert Regions, Urumqi 830000, China

4. Xinjiang Transportation Investment (Group) Co., Ltd., Urumqi 830000, China

5. Guangxi Key Laboratory of Road Structure and Materials, Guangxi Transportation Science and Technology Co., Ltd., Nanning 530007, China

6. School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China

Abstract

The influence of surface modification on the properties of bagasse fibers and asphalt binders/mixtures was investigated. Bagasse fibers were modified by single, binary, and ternary methods with hydrochloric acid, sodium hydroxide, and sodium chlorite, respectively. The physical and chemical properties of bagasse fibers were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, and an adsorption test, respectively. The rheological properties of asphalt binders with bagasse fibers or lignin fibers were analyzed by the dynamic shear rheometer test and bending beam rheometer test. In addition, the performance of asphalt mixtures with bagasse fibers or lignin fibers were evaluated by a wheel rutting test, bending test at a low temperature, and water stability test, respectively. In conclusion, the hydrophilic functional groups on the fiber surface were partially eliminated by modification, facilitating the degradation of different fiber components. Furthermore, the degree of fibrillation was improved, and more interfaces with asphalt components were formed, thus enhancing the high-temperature deformation resistance of asphalt binders, but slightly impairing its low-temperature performance. Among all modification methods, the ternary composite modification exerted important influences on fiber structure, oil absorption, and rheological properties of asphalt binders, significantly enhancing the performance of asphalt mixtures. Combined with surface modification methods, bagasse fibers would be promising reinforced pavement materials.

Funder

Natural Science Foundation of Guangxi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3