Mechanical Properties and Dry–Wet Stability of Soda Residue Soil

Author:

Zhao Xiaoqing12,Yang Tianfeng12,Liang Teng3,Zong Zhongling12,Li Jiawei12

Affiliation:

1. School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China

2. Marine Resources Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China

3. CCCC Third Harbord Engineering Co., Ltd. JiangSu Branch, Lianyungang 222042, China

Abstract

To effectively utilize the effectively the solid waste-soda residue (SR) and fly ash (FA), a mixture of 70% SR, 20% FA, and 10% clay was formed to produce soda residue soil (SRS). By adding cement and/or lime, four different SRS proportions were prepared. The compaction properties, mechanical properties, and dry–wet stability. Furthermore, the mechanical mechanisms of SRS were explored, and the improvement effect and efficiency of cement and/or lime on the mechanical performance of SRS were analyzed. The results show that the SRS is lightweight and easy to compact and shape, which is conducive to construction. Compared to cement, lime has a greater impat on the compaction properties of SRS. The mechanical properties of SRS are enhanced after adding cement and/or lime; the unconfined compressive strength (UCS), California Bearing Ratio (CBR), and resilient modulus all increase significantly. The UCS, CBR, and resilient modulus of SRS with different proportions all increase with the increase of compaction degree; the CBR and resilient modulus can meet the requirements of the subgrade, and the UCS can meet the requirements of the base and sub-base. The contribution rate of cement per unit amount is better than that of lime to the mechanical performance of SRS. As dry–wet cycles increase, the dry–wet stability of SRS with different proportions first increases and then decreases, which is affected by hydration and dry–wet deterioration together, with a critical cycle number for the strength transition. The excellent mechanical performance of SRS benefits from the gradation and chemical action. The particles of SR, FA, and clay can complement each other and perform an interlocking action. Therefore, SRS has a good gradation and forms a dense and stable structure. Also, the chemical reactions between materials are very important. The cement and/or lime have a hydration and gelling effect, FA and clay participate in pozzolanic reactions, and SR and FA have certain alkali-activated effects.

Funder

National Natural Science Foundation of China

Primary Research & Development Plan of Jiangsu Province

Lianyungang City Key Technology Project

Qinglan Project of Jiangsu Higher Education Institutions

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Natural Science Foundation of Industry-University-Research Project of LianSu Expressway

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3