The Analysis and Application of Installation Tolerances in Prefabricated Construction Based on the Dimensional Chain Theory

Author:

Long Hao12ORCID,Luo Xiaoyong13ORCID,Liu Jinhong1,Dong Shuang1

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410000, China

2. School of Civil Engineering, Hunan City University, Yiyang 413000, China

3. Hunan Prefabricated Building Engineering Technology Research Center, Central South University, Changsha 410000, China

Abstract

During the installation process of prefabricated components, deviations in dimensions and installation positions can occur due to construction quality issues, and the accumulation of these deviations can impact the reliability of component installation. However, the current approach to addressing accumulated deviations in the component installation process primarily relies on the trial-and-error method, lacking a solid theoretical foundation. This paper introduces the dimensional chain theory derived from mechanical engineering and presents a method to evaluate the installation reliability of prefabricated components in concrete structures. First, based on extensive measurements of installation deviations, it was found that the installation deviations of components followed a log-normal distribution. By analyzing the relationship between installation deviations and the acceptance rate, it was determined that for a 90% acceptance rate, the installation position deviation should be 8.6 mm for prefabricated wall panel components and 7.3 mm for prefabricated column components. Subsequently, the concept of dimensional chain theory from mechanical engineering was introduced to establish a limit state equation for quantifying the installation reliability of prefabricated components in concrete structures. By applying this theory, appropriate component fabrication dimensions could be determined to achieve a 95% level of installation reliability. Finally, by using the Monte Carlo method to solve the installation limit state equation for an actual engineering project, recommended fabrication dimensions for the components were obtained. The results indicate that within the horizontal axis, the length deviation of prefabricated beams, and the width fabrication dimension of columns needed to be reduced by 2.3 mm to 2.9 mm. Within the vertical axis, the length dimension of columns and the height dimension of beams had to be reduced by 0.9 mm to 2.2 mm to achieve a 95% level of installation reliability.

Funder

13th Five-Year Plan Key R&D Project

the National Natural Science Foundation

Yiyang City Science and Technology Special Funds Project

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3