Improving Life Cycle Sustainability and Profitability of Buildings through Optimization: A Case Study

Author:

Shadram FarshidORCID,Mukkavaara JaniORCID

Abstract

Building developers are continuously seeking solutions to increase saleable/rentable floor area and thus the profitability of investments, especially in large/dense cities where the real estate/rental values are high and shortage of available land results in smaller building footprints. Application of passive energy efficiency measures (e.g., thick insulation in walls) not only affects the life cycle sustainability of buildings, but also the floor area and its profitability. This can affect the decisions made on the choice of measures when aiming to improve sustainability. In line with limited studies in this context, a case study is presented here in which multi-objective optimization was used to explore the impact of various passive energy efficiency measures on the life cycle sustainability when accounting for the profitability of the floor area. The building case was a high-rise apartment based on a standardized building concept situated in different locations in Sweden, namely Vindeln, Gothenburg, and Stockholm. The findings indicated that, regardless of the location, use of (1) thick cellulose coating for the roof, and (2) moderately thick expanded polystyrene for the floor, were necessary to improve the life cycle sustainability. However, the optimal wall insulation was dependent on the location; in locations with high real estate values, the scope for using thick and conventional insulations (mineral wool/cellulose) was limited due to the significant economic loss caused by floor area reductions. In general, the optimization identified optimal solutions that could save up to 1410.7 GJ energy, 23 tonnes CO2e, and 248.4 TEUR cost from a life cycle perspective relative to the building’s initial design.

Funder

Swedish Energy Agency

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3