Combined Effects of Exterior Shading and A/C Heat Rejection on Building Energy Consumption and Indoor Air Pollution Exposure

Author:

Zhong Xuyang12,Zhang Zhiang3ORCID,Zhang Ruijun4,Wu Zijian5ORCID

Affiliation:

1. School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China

2. Postdoctoral Research Centre, Zhejiang Shankou Jiahe Group, Qingtian 323900, China

3. Department of Architecture and Built Environment, University of Nottingham Ningbo China, 199 East Taikang Road, Ningbo 315100, China

4. School of Architecture, Southeast University, 2 Sipailou, Nanjing 210096, China

5. Department of Mathematics and Computer Science, Lishui University, Lishui 323000, China

Abstract

Exterior shading devices and outdoor units can be closely coupled since these two building components are commonly installed next to each other. This study uses a coupled EnergyPlus-Fluent modeling approach to examine how a combination of exterior shading and heat rejection from outdoor units can affect the ambient outdoor environment of a building, and how changes in the ambient outdoor environment can influence cooling loads and indoor PM2.5 exposure. Three exterior shading devices were simulated, including horizontal overhangs, vertical overhangs, and vertical fins. Data from wind-tunnel experiments and field measurements were used to ensure the accuracy of the airflow model, energy model, and pollution model developed in this study. Results indicate that horizontal overhangs could almost offset the increase in cooling loads due to increased ambient outdoor temperatures caused by heat rejection. The use of vertical overhangs did not always mean lower demand for space cooling when heat rejection was considered. Heat rejection, horizontal overhangs, and vertical overhangs could help reduce indoor PM2.5 exposure, while indoor air pollution was worse after the implementation of vertical fins. This study shows how exterior shading devices and outdoor units can be coupled to achieve better building energy efficiency and improved occupant health.

Funder

Zhejiang Provincial Natural Science Foundation

Ningbo Science and Technology Bureau

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3