Buffeting Characteristics of a Long-Span Cable-Stayed Bridge Crossing a Deep Canyon during Erection: Response Evaluation and Vibration Control

Author:

Zhang Yichi1,Zhang Tianyi1,Su Yi2ORCID

Affiliation:

1. Sichuan Road & Bridge Group Co., Ltd., Chengdu 610059, China

2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing University, Chongqing 400045, China

Abstract

The stiffness of a long-span cable-stayed bridge under construction may be much lower than that observed in service, making it more susceptible to wind effects, especially for a bridge designed using high piers crossing a deep canyon. To study the buffeting characteristics of such cable-stayed bridges under construction, a long-span cable-stayed bridge (the main span is 575 m) is taken as the engineering background. In this study, the buffeting responses and vibration countermeasures at three different construction states were systematically studied using time-domain analysis. It was found that the buffeting response enlarges with an increase in the wind attack angle. The RMS values of the vertical buffeting of the bridge deck end are relatively greater at the maximum double cantilever construction state and maximum single cantilever state. At maximum double cantilever construction state, the traditional wind-resistant cable connecting the bridge deck end to the bridge pile cap significantly reduces the vertical buffeting response, while the suppression effect on lateral and torsional buffeting is limited. When the bridge deck nears completion, wind-resistant cables installed at both cantilever ending in the ‘soft connection’ method would effectively suppress the vertical, lateral, and torsional buffeting. The suppression effect of cross-arranged wind-resistant cables is superior to that of the parallel arrangement. It is recommended that a reasonable wind-resistant cable layout scheme according to different construction conditions is selected.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3