Numerical Analysis of Mechanical Behavior of Self-Centering Joint between CFDST Column and RC Beam

Author:

Yan Xueyuan,Shi Shen,Liu XuhongORCID,Mao Huimin

Abstract

The existing connection between the concrete-filled double steel tubular (CFDST) column and the reinforced concrete (RC) beam is difficult to repair and reuse after damage. In this paper, a self-centering joint between the CFDST column and the RC beam is proposed. The self-centering of the joint is realized by prestressed steel strands, and the energy dissipation is realized by friction. The overall purpose of the research is to analyze the influence of steel strand and friction on the mechanical behavior of the joint. By comparing the envelope curve and the restoring force model of a numerical joint model with theoretical values, accuracy of the numerical model was verified. Then, joints with different parameters, including the friction, prestress of steel strands, and ratio of the resisting moment provided by steel strands to the resisting moment provided by friction in the opening moment of joints, were numerically analyzed. The results showed that the joints with greater friction and prestress of steel strands had higher bearing capacity. Increasing the friction could increase the energy dissipation capacity of the joint, but it would increase the residual deformation of the joint. To reduce residual deformation, the prestress of steel strands should be increased. When the resultant force of the pretension of steel strands was greater than friction, the steel head could be kept pressed on the connecting block, making the stress changes of steel strands and the self-centering performance of the joint stable.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Fuzhou

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3