Mechanical Properties on Various FRP-Reinforced Concrete in Cold Regions

Author:

Lu Chenxuan,Ji YongchengORCID,Zou Yunfei,Zhou Jieying,Tian Yuqian,Xing Zhiqiang

Abstract

The evaluation of frost resistance varies with different reinforcement methods, but it is a hot research topic for concrete reinforced with Fiber-Reinforced plastic (FRP). Freezing and thawing tests of FRP-reinforced concrete prisms and cylinders are presented to simulate beams and piers of buildings in cold climates. To evaluate the specimens’ frost resistance, tests with various reinforcement techniques, morphological analysis, weight tests, and relative dynamic modulus of elasticity tests were used. Examined also were the variations in stress–strain curves for axial compression tests and load–displacement curves for bending tests following various freeze–thaw cycles. The findings indicated that after 100 freeze–thaw cycles, the weight of unreinforced concrete cylinders decreased by 9.7%, and its compressive strength decreased by 27.6%. On the other hand, CFRP-reinforced concrete cylinders (Carbon-Fiber-Reinforced Plastics) and GFRP (Glass-Fiber-Reinforced Plastics) gained 1.1% and 1.58% in weight, respectively, while the compressive strength decreased by 7.4% and 8%. After 100 freeze–thaw cycles, the weights of concrete prisms with reinforcement, without reinforcement, and with CFRP reinforcement decreased by 12.13%, 8.7%, and 9.6%, respectively, and their bending strength was reduced by 20%, 42%, and 53%, respectively. The frost resistance of the two FRP-reinforced concrete types had significant differences under freeze–thaw cycles because the prismatic specimens were not fully wrapped with FRP materials. Finally, finite element software ABAQUS was used to simulate the freeze–thaw cycle test of the two specimens. Calculated values were compared to experimental results for the load–displacement curve and the axial stress–strain curve under bending load. The comparison of peak displacement produced a maximum error of 8.6%, and the FRP-reinforced concrete model validity was verified.

Funder

the National College Students Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3