Off-Site Construction Three-Echelon Supply Chain Management with Stochastic Constraints: A Modelling Approach

Author:

Salari Samira Al-Sadat,Mahmoudi Hediye,Aghsami AmirORCID,Jolai Fariborz,Jolai Soroush,Yazdani MaziarORCID

Abstract

Off-site construction is becoming more popular as more companies recognise the benefits of shifting the construction process away from the construction site and into a controlled manufacturing environment. However, challenges associated with the component supply chain have not been fully addressed. As a result, this study proposes a model for three-echelon supply chain supply management in off-site construction with stochastic constraints. In this paper, multiple off-site factories produce various types of components and ship them to supplier warehouses to meet the needs of the construction sites. Each construction site is directly served by a supplier warehouse. The service level for each supplier warehouse is assumed to be different based on regional conditions. Because of the unpredictable nature of construction projects, demand at each construction site is stochastic, so each supplier warehouse should stock a certain number of components. The inventory control policy is reviewed regularly and is in (R, s, S) form. Two objectives are considered: minimising total cost while achieving the desired delivery time for construction sites due to their demands and balancing driver workloads during the routeing stage. A grasshopper optimisation algorithm (GOA) and an exact method are used to solve this NP-hard problem. The findings of this study contribute new theoretical and practical insights to a growing body of knowledge about supply chain management strategies in off-site construction and have implications for project planners and suppliers, policymakers, and managers, particularly in companies where an unplanned supply chain exacerbates project delays and overrun costs.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3