Abstract
Thermal bridging in the building envelope is one of the main causes of energy losses, even in high-efficiency ventilated building façades. In this study, the effects of point-thermal bridges attributed to metal fasteners on the heat transferred through different types of bricks were predicted. All the structural details of the substrate wall were included as well. This was accomplished with a multi-scale, finite element modelling approach used to enhance the thermal insulation efficiency of the building envelope. The effects of the metal fastener length, diameter, density and location were examined to elucidate any opportunity to minimize the heat losses caused by thermal bridging. The results demonstrated that increases in the lengths of fasteners yielded higher energy losses compared with those generated when the diameter increased. Additionally, metal fasteners caused higher energy losses by up to 30% when fixed on mortar, compared with the energy losses incurred when they were fixed on bricks.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献