An Improved Anchorage System for L-Shaped FRP Composites to Enhance the Seismic Response of Beam-Column Joints in a Low-Strength Substandard Reinforced Concrete (RC) Frame

Author:

Adil Waqas1,Rahman Fayyaz Ur1,Ali Qaisar1,Papakonstantinou Christos G.2ORCID

Affiliation:

1. Department of Civil Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan

2. Laboratory of Concrete Technology and Reinforced Concrete Structures, Department of Civil Engineering, University of Thessaly, 38334 Volos, Greece

Abstract

Reinforced concrete buildings are prone to collapse during seismic events due to the brittle shear failure of non-seismic beam-column joints (BCJ). In this study, two one-third scale reinforced concrete (RC) frames incorporating various non-seismic details were tested under lateral cyclic loading. One of the RC frames was used as control, while the other was strengthened using externally bonded carbon-fiber-reinforced polymer (CFRP) sheets in a L-Shaped configuration with particular attention to anchorage to evade debonding. For the strengthening process, L-shaped CFRP sheets were bonded to the inner face of columns, extended on beams both above and below the joint up to a hinge length. To avert debonding, the L-shaped CFRP sheets were fully wrapped with CFRP sheets around the column, both near the joint and at the end of the sheet. The sheets were also wrapped around the beam, through two slots in the slab that were adjacent to the beam-column interface and at the far end of the sheet. Test results confirmed that the installation of CFRP sheets in an L-shaped configuration altered the brittle-shear failure mechanism of the beam-column joints to a ductile failure by repositioning the hinges away from the columns. Additionally, the proposed anchorage method successfully eradicated the debonding and peel-off of the CFRP sheets. Moreover, strengthening with the CFRP sheets in the L-shaped configuration enhanced the strength and ductility of the RC frame by 45% and 43%, respectively. According to the findings of this study, the application of L-shaped CFRP sheets proved effective in strengthening RC frame structures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3