Exposure Assessment of Traffic-Related Air Pollution Based on CFD and BP Neural Network and Artificial Intelligence Prediction of Optimal Route in an Urban Area

Author:

Ren Lulu,An FarunORCID,Su Meng,Liu JiyingORCID

Abstract

Due to rapid global economic development, the number of motor vehicles has increased sharply, causing significant traffic pollution and posing a threat to people’s health. People’s exposure to traffic-related particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) primarily occurs during commuting. Many studies have used exposure risk assessment models to assess the possible adverse effects of PM2.5, but few have used them to plan low-risk pathways for commuters. This study simulated the pollutant concentration distribution in an idealized urban area in different scenarios. We then used a back propagation (BP) neural network to predict the pollutant concentration. The commuter respiratory deposition dose was calculated based on the BP prediction results, and the respiratory deposition dose was converted into obstacles on the commuting map. Finally, the rapidly exploring random tree star (RRT*) algorithm was used to plan low-risk paths for commuters. The results indicate that pollutants discharged by cars and tree planting can significantly affect the pollutant concentration. A 30.25 μg/m3 increase in the pollutant concentration discharged by cars resulted in a 7~13 μg/m3 increase in the traffic-related air pollution concentration on sidewalks. Combining a computational fluid dynamics simulation, a BP neural network model, and the RRT* algorithm provides a system to plan low-risk paths for commuters. This work proposes artificial-intelligence-based models for calculating the exposure risk to traffic-related pollutants (PM2.5) and choosing a low-risk commuting path to ensure healthy travel.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3