Heating and Cooling Primary Energy Demand and CO2 Emissions: Lithuanian A+ Buildings and/in Different European Locations

Author:

Valančius KęstutisORCID,Grinevičiūtė Monika,Streckienė GiedrėORCID

Abstract

National legal and political regulation in the field of energy efficiency is closely connected to minimizing energy consumption in buildings. Within the framework of implementing Directive 2018/844/EU on the energy performance of buildings in Europe, the practice of its application differs from country to country. This study aims to reveal the differences in the energy indicators of an energy-efficient building in European states. To that end, an analysis was made to compare the results of a single-family home model in 11 city locations with different climatic conditions (from the Mediterranean to Nordic) and appropriate national regulations in place for the past three years. The simulation was done using IDA Indoor Climate and Energy software, EQUA Simulation AB, Stockholm, Sweden. The demand for primary energy is based on primary energy factors. A comparison of overall heat transfer coefficients for walls and windows in an energy-efficient building in different locations was made to reveal the differences in applicable national regulations. The results showcase the primary energy demand depending on the different climatic conditions for building heating and cooling purposes, as appropriate, and on CO2 emissions. The study has shown the energy demand for cooling to increase significantly—by 65% in the case of Vilnius, whereas only a slight decrease in the demand for heating. Furthermore, a Lithuanian energy class A+ building is singled out as an individual case, its energy indicators determined for a different location under analysis.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3