The Vertical Behaviors of Dissimilar Pile Composite Foundations over Inclined Bedrock

Author:

Zhou Yingjie12,Tan Lihua32,Yue Zhiliang32,Yan Lei2ORCID,Jiang Kaiyu2,Gou Xiaoying2ORCID

Affiliation:

1. Chongqing Wanzhou Economic-Technological Development Area Construction & Development Co., Ltd., Chongqing 404199, China

2. School of Civil Engineering, Chongqing Three Gorges University, Chongqing 404100, China

3. No. Three Engineering Co., Ltd. of CCCC First Highway Engineering Co., Ltd., Beijing 101102, China

Abstract

Pile composite foundations (PCFs) have been commonly applied in reinforcement engineering to adjust the vertical stiffness of foundations, due to the displacement control design criteria for foundations. PCFs that have dissimilar pile lengths, located over inclined bedrock, have shown significantly different vertical behaviors from PCFs with equal pile lengths, placed over a semi-infinite medium. However, the vertical behaviors of dissimilar PCFs over inclined bedrock cannot be predicted with the current theoretical methods, although they have been widely adopted in engineering. An analytical method is proposed in this investigation to analyze the vertical bearing characteristics of dissimilar PCFs over inclined bedrock. A pile–soil system is decomposed into fictitious piles and extended soil, and then a control equation to determine the axial force along the fictitious piles is established, stemming from the compatibility conditions between them. The vertical behaviors of dissimilar PCFs can be obtained by solving the control equation with iterative procedures, and the equation is verified by two field load tests of single piles from the Honghe bridge and a numerical case. Then, the settlement and load transfer behaviors of 3 × 1 dissimilar PCFs and their influence factors are analyzed, and the results are as follows. (1) Obvious differences can be observed concerning the axial force distribution, settlement w, and load-sharing ratio (LSR) of each pile element for different pile–soil stiffness ratios (Ep/Es). (2) The LSR of pile 1 increases from 0.074 to 0.253 for the rigid pile and from 0.062 to 0.161 for the flexible pile condition when the cushion stiffness Kc changes from 1 × 104 kN/m to 3 × 108 kN/m. The non-dimensional vertical stiffness of the foundation, N0/wdEs, increases from 10.21 to 28.95 for the rigid pile condition and increases from 8.69 to 14.44 for the flexible pile condition, when Kc increases from 1 × 104 kN/m to 4 × 105 kN/m. (3) The neutral layer depth of the pile zn, the average settlement w, and the differential settlement wd of each element head decrease with Kc, and no negative friction zone exists (zn = 0 m) for all the pile elements when Kc> 2 × 105 kN/m. (4) The N0/wdEs decreases with the distance between the pile bottom and the inclined bedrock Δ. For the rigid and flexible pile conditions, the N0/wdEs is 22.16 and 13.48 for Δ = 1 m, and 13.13 and 10.10 for Δ = 8 m. The wd reaches 16.7 mm and 4.0 mm for Δ = 1 m and Δ = 8 m, respectively. (5) The N0/wdEs increases almost linearly with an increase in l/d for the rigid pile condition, and it gradually decreases for the flexible pile condition. The developed model can improve the design and analysis of PCFs located over inclined bedrock under vertical loading.

Funder

General Program of the China Postdoctoral Science Foundation

Natural Science Foundation of Chongqing, China

Scientific and Technological Research Program of Chongqing Municipal Education Commission

Cooperation Projects between Universities of Chongqing and Institutes Affiliated to the Chinese Academy of Sciences

Publisher

MDPI AG

Reference45 articles.

1. Analysis of Features of Long and Short Pile Composite Foundation in High-Rise Buildings;Yang;Soil Mech. Found. Eng.,2022

2. Study of the Effect of an Inclined Bedrock on the Bearing Capacity of Shallow Foundations;Fatolahzadeh;Iran. J. Sci. Technol. Trans. Civ. Eng.,2020

3. Soil vibration induced by railway traffic around a pile under the inclined bedrock condition;Ding;Geomech. Eng.,2021

4. Effects of inclined bedrock on dissimilar pile composite foundation under vertical loading;Jiang;Geomech. Eng.,2022

5. Numerical and test study on vertical vibration characteristics of pile group in slope soil topography;Liming;Earthq. Eng. Eng. Vib.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3