Shear Enhancement of RC Beams Using Low-Cost Natural Fiber Rope Reinforced Polymer Composites

Author:

Hussain Qudeer,Ruangrassamee AnatORCID,Joyklad PanuwatORCID,Wijeyewickrema Anil C.

Abstract

The aim of this research work is to investigate the efficiency of newly developed Natural Fiber Rope Reinforced Polymer (NFRRP) composites to enhance the shear strength of reinforced concrete (RC) beams. Two types of NFRRP composites were made using low-cost hemp and cotton fiber ropes. The effectiveness of this NFRRP confinement in increasing the shear, energy dissipation, and deformation capacities of concrete beams was studied. The effect of these natural fiber ropes with different configurations on beams was investigated. The responses of seven RC beams with different spacing arrangements of natural fiber ropes were evaluated in terms of shear enhancement, deflection, energy dissipation capacity, effect of strengthening configuration, rope types, and ultimate failure modes. The NFRRP composites exceptionally enhanced the load carrying abilities, energy dissipation, and deformation capabilities of RC beams as compared to the control beam. The ultimate load carrying capacities of natural hemp and cotton Fiber Rope Reinforced Polymer (FRRP) composite confined beams were found to be 63% and 56% higher than that of the control beam, respectively. Thus, the shear strengthening of RC beams using natural fiber ropes is found to be an effective technique. Finite Element Analysis was also carried out by using the Advanced Tool for Engineering Nonlinear Analysis (ATENA) software. The analysis results compare favorably with the tests’ results.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3