Utilization of Polyurethane Foam Dust in Development of Thermal Insulation Composite

Author:

Abu-Jdayil BasimORCID,Al Abdallah HyderORCID,Mlhem Amal,Alkhatib Sarah,El Sayah Asmaa,Hussein Hend,Althabahi Asayel,AlAydaroos Alia

Abstract

The massive production of Polyurethane foam from various products generates an extensive amount of waste, mostly in the form of dust that is emitted while cutting, trimming, or grinding the foam. In this research, the polyurethane dust (PUD) waste is incorporated into unsaturated polyester resin (UPR) to fabricate a heat insulation composite material to be used in construction. Filler percentages ranging from 10% to 50% were used to make the UPR-PUD composite materials. The thermal and mechanical properties of the material were studied in order to evaluate the ability of the composites for this type of application. Thermogravimetric Analysis and Differential Scanning Calorimeter tests were applied to determine the thermal stability of the material. In addition, the microstructure of the prepared composites and the incorporation of PUD filler into the polyester matrix were investigated by Scanning Electron Microscopy, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) analysis. The FTIR and XRD analyses suggested that adding PUD improved the curing process of unsaturated polyester and enhanced its crystalline structure. The experimental results showed promising thermal insulation capability, with low thermal conductivity in the range of 0.076 to 0.10 W/m·K and low water retention. Moreover, the composites exhibited compression strength between 56 and 100 MPa and tensile strength between 10.3 and 28 MPa, much higher than traditional thermal insulators and many building materials.

Funder

United Arab Emirates University

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3