Environment-Induced Performance of End Concrete Diaphragm in Skewed Semi-Integral Bridges

Author:

Hussein Husam H.ORCID,Khoury IssamORCID,Lucas Joshua S.

Abstract

Past research has shown that as skewed bridges change temperature, additional lateral movement or forces will occur along with the elongation of the bridge. Even though past research has documented this behavior, lateral movements of semi-integral bridge superstructure associated with temperature effects on bridge skewness have not been well predicted. In this study, the seasonal movements of a 24-year-old semi-integral bridge caused by temperature effects with skewed abutment have been investigated by conducting a series of field measurements on bridges subjected to various environmental climates. The measured data showed that as the bridge heated up, the superstructure tended to move toward the acute corner of the bridge, and the bridge would contract towards its obtuse corner with a negative temperature change. During warm weather, the cracks on the end diaphragm tended to open with a positive temperature change and close with a negative temperature change, which was much more predictable than the cold weather behavior. This behavior confirms that even though the bridge moves linearly with temperature, the end diaphragm response to the temperature depends on the season. Movement of the bridge superstructure from temperature change has caused cracks in the end diaphragm, which are now propagating to the deck. These cracks could damage the bridge enough that it would require repair work in the future. The evidence in this study will help provide a complete picture of seasonal jointless bridge behavior so future semi-integral bridges can be made safer and more efficient.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference27 articles.

1. Fu, G., Dimaria, J., Zhuang, Y., and Feng, J. (2007). Bridge Deck Corner Cracking on Skewed Structures.

2. Influence of Skew Angle on Live Load Moments in Steel Girder Bridges;Bridge Struct.,2011

3. Girder Moments in Continuous Skew Composite Bridges;J. Bridge Eng.,1996

4. Nutt, R.V., Schamber, R.A., and Zokaie, T. (1988). Distribution of Wheel Loads on Highway Bridges, National Cooperative Highway Research Program (NCHRP). Project Report 12-26.

5. Shear Distribution in Simply Supported Skew Composite Bridges;Can. J. Civ. Eng.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3