Thermal Performance of Double-Pane Lightweight Steel Framed Walls with and without a Reflective Foil

Author:

Santos PauloORCID,Ribeiro TelmoORCID

Abstract

One strategy to increase energy efficiency of buildings could be the reduction of undesirable heat losses by mitigating the heat transfer mechanisms across the building envelope. The use of thermal insulation is the simplest and most straightforward way to promote thermal resistance of building elements by reducing the heat transfer by conduction. However, whenever there is an air cavity, radiation heat transfer could be also very relevant. The use of thermal reflective insulation materials inside the air gaps of building elements is likewise an effective way to increase thermal resistance without increasing weight and wall thickness. Some additional advantages are its low-cost and easy installation. In this work, the performance of a thermal reflective insulation system, constituted by an aluminium foil placed inside an air cavity between a double pane lightweight steel framed (LSF) partition, is experimentally evaluated for different air gap thicknesses, ranging from 0 mm up to 50 mm, with a step increment of 10 mm. We found a maximum thermal resistance improvement of the double pane LSF walls due to the reflective foil of around +0.529 m2∙°C/W (+21%). The measurements of the R-values were compared with predictions provided by simplified models (CEN and NFRC 100). Both models were able to predict with reasonable accuracy (around ±5%) the thermal behaviour of the air cavities within the evaluated double pane LSF walls.

Funder

European Regional Development Fund

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference34 articles.

1. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency;Off. J. Eur. Union,2018

2. Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources;Off. J. Eur. Union,2018

3. Energy Efficiency of Light-weight Steel-framed Buildings;Santos,2012

4. The Effectiveness of Thermal Insulation in Lightweight Steel-Framed Walls with Respect to Its Position

5. Thermal and sound insulation of lightweight steel-framed façade walls

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3