Study on Air Cabin Ventilation System by Local Structural Optimization during Tunnel Construction

Author:

Yang Shuai,Ren Rui,Wang Ya-Qiong

Abstract

In tunnel construction, the difficulty of ventilation gradually increases with the increase of ventilation distance, which endangers construction safety and delays construction progress. This paper presents an air cabin ventilation system of the tunnel during construction. Theoretical calculations show that the energy consumption of this ventilation system is reduced by 20.7% compared with blowing ventilation, especially since the resistance loss along the air duct is reduced by 47.04%. A 3D numerical model validated with field test data was employed to discuss the air cabin structural parameters on the ventilation efficiency of the axial fan. The results show that the relative pressure on the fan’s end face increases when the air cabin’s length–width ratio is R = 1:2. The fan spacing S = 2–4 m can ensure the larger relative pressure of multiple fans. The significant difference in air demand between the left and right sides causes the disordered airflow. Set a middle diaphragm length of 1.5 D in the air cabin, which can effectively reduce the phenomenon. The middle diaphragm with a radian of 30°effectively reduced the local loss by 59.40%. The proposed ventilation system shortens the ventilation distance and has the advantages of low energy consumption and resistance loss. It improves the construction environment and is a valuable means of ventilation design for tunnel construction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference34 articles.

1. Development of highway tunnels in China in 2018;Jiang;Tunn. Constr.,2019

2. A new ventilation system for extra-long railway tunnel construction by using the air cabin relay: A case study on optimization of air cabin parameters length;Tao;J. Build. Eng.,2022

3. Study on Optimization of Mixed Construction Ventilation for Super Long Tunnel;Li;Mod. Tunn. Technol.,2020

4. Calculation method of air temperature in tunneling section of open-type TBM construction;Wang;China Railw. Sci.,2019

5. Temperature reduction for extra-long railway tunnel with high geotemperature by longitudinal ventilation;Zeng;Tunn. Undergr. Space Technol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3