Partitioning Climate, Users, and Thermophysical Uncertainties from Building Energy Use: A Monte Carlo & ANOVA Approach

Author:

Yassaghi HamedORCID,Mostafavi Nariman,Wen Jin,Hoque Simi

Abstract

Buildings are subject to many uncertainties ranging from thermophysical performance to user activity. Climate change is an additional source of uncertainty that complicates building performance evaluation. This study aims to quantify the share of uncertainties stemming from building factors, user behavior, and climate uncertainty from boilers, chillers, fans, pumps, total HVAC systems, and total site energy use. A novel method combining Monte Carlo analysis and ANOVA is proposed to partition uncertainties from building energy simulation results under different climate change scenarios. The Monte Carlo method is used to generate distributions of building and user factors as building simulation inputs. Then, simulation results under current and future climate conditions are post-processed using a three-way ANOVA technique to discretize the uncertainties for a reference office building in Philadelphia, PA. The proposed method shows the share in percentages of each input factor (building, user, and climate) in the total uncertainty of building energy simulation output results. Our results indicate that the contribution of climate uncertainty increases from current conditions to future climate scenarios for chillers, boilers, fans, and pumps’ electricity use. User parameters are the dominant uncertainty factor for total site energy use and fans’ electricity use. Moreover, boiler and HVAC energy use are highly sensitive to the shape and range of user and building input factor distributions. We underline the importance of selecting the appropriate distribution for input factors when partitioning the uncertainties of building performance modeling.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3