Optimization of the Curved Metal Damper to Improve Structural Energy Dissipation Capacity

Author:

Kim Young-Chan,Mortazavi SeyedORCID,Farzampour Alireza,Hu Jong-WanORCID,Mansouri Iman,Awoyera PaulORCID

Abstract

Structural curved metal dampers are implemented in various applications to mitigate the damages at a specific area efficiently. A stable and saturated hysteretic behavior for the in-plane direction is dependent on the shape of a curved-shaped damper. However, it has been experimentally shown that the hysteretic behavior in the conventional curved-shaped damper is unstable, mainly as a result of bi-directional deformations. Therefore, it is necessary to conduct shape optimization for curved dampers to enhance their hysteretic behavior and energy dissipation capability. In this study, the finite element (FE) model built in ABAQUS, is utilized to obtain optimal shape for the curved-shaped damper. The effectiveness of the model is checked by comparisons of the FE model and experimental results. The parameters for the optimization include the curved length and shape of the damper, and the improved approach is conducted by investigating the curved sections. In addition, the design parameters are represented by B-spline curves (to ensure enhanced system performance), regression analysis is implemented to derive optimization formulations considering energy dissipation, constitutive material model, and cumulative plastic strain. Results determine that the energy dissipation capacity of the curved steel damper could be improved by 32% using shape optimization techniques compared to the conventional dampers. Ultimately, the study proposes simple optimal shapes for further implementations in practical designs.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference47 articles.

1. Analytical and Experimental Investigation of the Structural Fuse Concept;Vargas;Ph.D. Thesis,2006

2. Enhancing the seismic performance of EBFs with vertical shear link using a new self-centering damper;Mirzai;Int. J.,2018

3. Shape optimization of butterfly-shaped shear links using Grey Wolf algorithm;Farzampour;Ing. Sismica,2019

4. A New Tuned Mass Damper Design Method based on Transfer Functions

5. Innovative Mobile TMD System for Semi-active Vibration Control of Inclined Sagged Cables

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3