An Experimental Study on Flexural-Shear Behavior of Composite Beams in Precast Frame Structures with Post-Cast Epoxy Resin Concrete

Author:

Chen Peiqi12,Xu Shuo12,Zhou Xiaojie12,Xu Dezong12

Affiliation:

1. Tianjin Key Laboratory of Civil Buildings Protection and Reinforcement, Tianjin 300384, China

2. School of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, China

Abstract

Epoxy resin concrete has superior mechanical properties compared to ordinary concrete, and will play an increasingly important role in urban construction. In this paper, the application effect and prospect of epoxy resin concrete in precast composite frame structures are discussed. Taking the joint surface of the old and new concrete at the end of the composite beam as the research object, three specimens were devised and fabricated. Subsequently, a horizontal cyclic load test was conducted, and the seismic performance indices were analyzed. Multiple finite element models were established to assess the influence of precast concrete strength, the diameter of the longitudinal bar of the beam, the shear span ratio, and the epoxy resin concrete post-cast area, among other factors, on the seismic performance of the beam end. Four findings indicate the following: Firstly, epoxy resin concrete, characterized by its high performance attributes, can be used as a post-cast material in precast concrete structures. Secondly, when the strength of the post-cast epoxy concrete approximates or slightly exceeds that of the precast concrete, and the ratio of longitudinal reinforcement and shear span ratio are appropriately balanced, the operational performance of the composite beam frame structure is enhanced. In addition, when post-cast epoxy resin concrete is employed in the beam-column joint area, the mechanical performance of the composite beam end in the joint area matches or even surpasses that of the structure that was cast in situ. And subsequently, the expansion of post-cast area resulted in better mechanical performance. Finally, when the area of post-cast epoxy resin concrete is a non-node area, the mechanical properties of the composite beam end are worse than the former. However, the amount of epoxy resin concrete used will be greatly reduced, and as the precast node area expands, the bearing capacity of the beam end will increase and gradually approach the cast-in situ structure, indicating that this construction scheme also has advantages.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3