Research on the Method of Absolute Stress Measurement for Steel Structures via Laser Ultrasonic

Author:

Tian Hongsong1,Kong Yujiang1,Liu Bin1,Ouyang Bin1,He Zhenfeng23,Liao Leng23

Affiliation:

1. Guizhou Bridge Construction Group Co., Ltd., Guiyang 550001, China

2. State Key Laboratory of Mountain Bridges and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China

3. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

Accurate measurement of the stress in steel structures is crucial for structural health monitoring. To achieve this goal, a novel technique, the laser ultrasonic technique, was used in absolute stress measurement in this study. The feasibility of this technique has been verified through theoretical analysis and finite element (FE) analysis. A stress measurement experiment in steel specimens was conducted and the relationship between ultrasonic relative wave velocity and stress was explored. The results revealed that there is a similar linear correlation between the ultrasonic relative wave velocity and absolute stress. The stress can be obtained based on ultrasonic relative wave velocity. According to the stress measurement results, it was found that the absolute error between the measured stress and theoretical stress was largest when the stress level was low, and that the measured error of stress gradually decreased with increases in the applied stress. The relative error between the measured stress and the theoretical stress was within 10% when the stress was higher than 100 MPa. This further verifies the reliability of the laser ultrasonic technique under high-stress conditions. Additionally, the impact of temperature and surface roughness on stress measurement was analyzed. The stress error in stress measurement increased similarly linearly with the increase in temperature and increased non-linearly with the increase in roughness. The corresponding compensation methods were proposed to effectively improve the accuracy of measurement.

Funder

National Natural Science Foundation of China

Natural Science Fund for Distinguished Young Scholars of Chongqing

Chongqing Natural Science Foundation of China

Science and Technology Project of Guizhou Provincial Transportation Department

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3